
The Design of a Fault-Tolerant COTS-Based Bus Architecture for

Space Applications*

Savio N. Chau Leon Alkalai

Center for Integrated Space Microsystems

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109

Ann T. Tai

IA Tech, Inc.

10501 Kinnard Avenue

Los Angeles, CA 90024

Abstract

The high-performance, scalability and miniaturization requirements together with the power, mass

and cost constraints mandate the use of commercial-off-the-shelf (COTS) components and standards in

the X2000 avionics system architecture for deep-space missions. In this paper, we report our experi-

ences and findings on the design of an IEEE 1394 compliant fault-tolerant COTS-based bus architecture.

While the COTS standard IEEE 1394 adequately supports power management, high performance and

scalability, its topological criteria impose restrictions on fault tolerance realization. To circumvent the

difficulties, we derive a "stack-tree" topology that not only complies with the IEEE 1394 standard but

also facilitates fault tolerance realization in a spaceborne system with limited dedicated resource re-

dundancies. Moreover, by exploiting pertinent standard features of the 1394 interface which are not

purposely designed for fault tolerance, we devise a comprehensive set of fault detection mechanisms to

support the fault-tolerant bus architecture.

Keywords: COTS, IEEE 1394, space applications, bus network reliability, fault-tolerant bus architecture

Submission Category: Regular Paper

Principal Contact: Leon Alkalai, Leon .Alkalaj @jpl. nasa. gov

"The research described in this paper wa._carried out by the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration.

1 Introduction

Starting in FY 98, NASA's Office of Space Science has initiated the Advanced Spacecraft Systems Devel-

opment Program, also known as X2000, to develop advanced spacecraft technologies for future deep-space

exploration missions. One of the focus technology development areas is advanced avionics technologies

being developed at the newly established Center for Integrated Space Microsystems (CISM), a Center of

Excellence at NASA's Jet Propulsion Laboratory [1]. The main focus of CISM is the development of highly

integrated, reliable, and highly capable micro-avionics systems for deep-space, long-term survivable, au-

tonomous robotic missions.

The X2000 Program is aimed at delivering a new generation of spacecraft systems every three years, to

real flight projects (that is, to the missions) [2]. Currently, there are at least five flight projects that have been

identified as direct customers of the X2000 First Delivery technologies in the year 2000, namely,

Europa Orbiter will orbit the moon of Jupiter that has recently been imaged by the Galileo spacecraft. The

high radiation environment is a challenge, requiring special electronics design, and extensive radiation

shielding. Reduction of mass is critical to the mission success.

Pluto/Kuiper Express will be a mission to image the planet Pluto and go beyond to explore the Kuiper Belt.

Long-term survivability, low-power, and autonomous operations are the challenges.

Solar Probe will perform science measurements heading directly to the Sun, within several solar radii.

Operating through extreme temperature environments and radiation is the challenge.

Champollion will rendezvous with a comet, land on its nucleus, and sample the comet, performing in-situ

measurements. Advanced miniaturization is essential.

Mars Sample Return is a mission engaged by NASA in a coordinated international multiyear robotic ex-

ploration of Mars, with the goal of returning samples to Earth. Reduction in mass is essential, as well

as on-board autonomous operations.

The earliest launch of the above listed missions is in 2003 (Europa and Kuiper Express). The target

missions for the Second Delivery are currently being considered. One should also note that most of the

technologies being developed by X2000 are also applicable to Earth orbiting missions. Since the goal of

the X2000 Program is to develop multi-mission spacecraft systems technologies for flight projects, the main

challenge was to define a scalable, open architecture that can address different requirements (which are

often conflicting) such as radiation, temperature, mission complexity, mass, power and volume constraints

[3]. Among other things, the most severe constraint is the overall cost of the missions.

With the successful Mars Pathfinder landing on Mars on July 4th 1997, NASA has entered a new era of

faster, better, cheaper space exploration (at $150 million, less than some Hollywood movie productions such

as Titanic). Under stringent cost constraints, Pathfinder used many commercially available or Commercial

OffThe Shelf (COTS) technologies. However, while the Mars Pathfinder mission was designed for a 30-day

primary mission success (it actually lasted several months), the deep-space missions targeted by the X2000

Program must survive up to 15 years (e.g., Pluto/Kuiper Express).

in thispaper,wereportindetailourcurrentworkatCISMonthedesignof adistributed,scalable,fault-
tolerantmulti-missionavionicsarchitecturebasedonCOTStechnology(whichis referredto as"X2000
architecture"in theremainderof thepaper).Thearchitectureiscurrentlythebaselinelbr theEuropaOrbiter
andPluto/KuiperExpressprojects,bothscheduledlbr launchintheyear2003[4]. IntheX2000architecture,
themultiplecomputingnodesanddevicesaresymmetric,whichmeansthattherolesof computingnodes
areinterchangeablewhiledevicesaretreatedasintelligentnodesin thenetwork.Moreover,theysharea
commonredundantbusarchitecture.Mostnotably,all interfacesusedin thisdistributedarchitectureare
basedonCOTS.Specifically,thelocalcomputerbusis thePeripheralComponentInterface(PCI)bus[5];
the"systembus"is theIEEE1394high-speedbus[6,7]; andtheengineeringbusis theI2Cbus[81.Using
strictlyCOTSIntellectualProperty(IP) for all componentinterfacesis a crucialsteptowardsignificant
reductionof bothsystemdevelopmentcostandtargetcostof thedevelopedsystem(recurringcost),as
COTSinterfacesenableotherCOTSproductsandIPstobeaccommodatedbythearchitecture[2].Thereal
challengeis todeliverahighlyreliableandlong-termsurvivablesystembasedonsuchanarchitecture,where
theCOTSIPsarenotdevelopedfor mission-criticalapplications.Thespiritof oursolutionis to maximize
theuseof standardfeaturesof aCOTSproductin aninnovativemannerto circumventits shortcomings,
thoughthesestandardfeaturesmaynotbeoriginallydesignedforhighlyreliablesystems.

In thelbllowingsection,weprovidemoreinformationaboutthebaselineX2000architecture,thecon-
ceptof usingCOTSin thecontextof X2000Program,andthefeaturesanddisadvantagesof IEEE1394
weexploitandcircumvent,respectively,in implementingafault-tolerantbusarchitecture.In Section3,
weelaboratethestack-tree topology which is IEEE 1394 compliant and exploits IEEE 1394's port-disable

feature for bus network reliability. In Section 4, we describe our fault detection mechanisms that support

the fault-tolerant bus architecture. Section 5 presents the methods and results of reliability evaluation for

the stack-tree topology based bus network. In the concluding remark, we summarize what we have accom-

plished in this effort and discuss our findings.

2 X2000 Baseline Architecture: A COTS-Based Approach

The proposed baseline X2000 First Delivery avionics architecture is shown in Figure 1, which covers all

spacecraft avionics functions including: 1) on-board spacecraft commanding and operations, 2) power man-

agement and distribution, 3) science data storage and on-board science processing, 4) telemetry collection,

management and downlink, 5) spacecraft navigation and control, 6) autonomous operations for on-board

planning, scheduling, autonomous navigation fault-protection, isolation and recovery, etc., and 7) interfac-

ing to numerous device drivers -- both "dumb'and "intelligent" device drivers.

The X2000 is a distributed, symmetric architecture with multiple computing nodes and real-time devices

connected by a reliable and redundant set of buses. All of the buses that are being used are based on COTS

IPs which have been competitively procured. This approach is driven and justified by the requirements of

cost reduction lbr the total system and system development. The COTS buses provide a system level inter-

face to both low-bandwidth (dumb) devices, as well as intelligent devices with embedded micro-controllers.

Further, each computing node consists of: I) a high-perfi)rmance processor module (high-performance

Flight Dstt _ja MCM FBgh!Data Sys MCM FHghtD=a Sy8MCM [. I
t28 MB Memory MCM 128 MB Memo_ MCM 128 M8 Memory MCM il Science
4-ObltNon-Volatile Mere 4*ObltNon.Vola_kmMere 4.Obtl Non.VolattloMere II Inatument

,,o, II I ,--,,. I'l

--7
IzC power atlitudo contro

swilches ck_vices

Figure 1: Baseline X2000 First Delivery Avionics Architecture

for space applications implies a speed around 100 MIPS), 2) a 128 Mbytes of local (DRAM) memory, and

3) a 128 Mbytes of on-board non-volatile storage for critical spacecraft information as well as science data.

All of these modules communicate via an inter-module 33 MHz PCI bus. The I/O module also provides for

the redundant IEEE 1394a interface to other computer nodes and device drivers. The same I/O module also

provides the I2C interface which is a low-bandwidth engineering bus.

All the computing nodes over the 1394 bus can be used in a symmetric fashion to control the on-board

spacecraft functions. Moreover, the computer redundancy will be exploited for additional on-board capabil-

ities such as fault-tolerant operations, dynamic fault-detection, on-board software verification for software

upgrades. Many of the on-board functions in the distributed architecture will be used at the discretion of the

target missions based on available power constraints, mission specific requirements, etc.

2.1 Concept of COTS in the Context of X2000 Architecture

As the term "COTS" has a number of different interpretations, it is important to briefly elaborate what we

do and what we do not mean by COTS in the context of X2000 architecture. Some interpretations of COTS

for space applications imply the direct use of commercial pans, components, or systems. This was certainly

the case in Mars Pathfinder where commercial DRAMs were used in the flight computer, and a commercial

modem was used as part of the communication system with the Sojourner Rover. In the X2000 architecture,

the term COTS has a unique interpretation. In particular, since at least one of the target X2000 customers,

namely, Europa, requires the tolerance of high-radiation environments, all the critical electronic components

have to be fabricated on specialized semiconductor foundries. Therefore, for the X2000 architecture, we

have decided to "procure" COTS IPs for all inter-component interfaces, which in turn, enables other COTS

products and COTS IPs to be incorporated into the architecture. While the IPs are COTS products, the actual

fabrication of chips and other components are basically carried out by radiation hardened foundries. In that

sense, the actual components are COTS IP based and specialized for space use, while the actual interlaces,

protocols, etc. are all COTS standard compliant. With this approach, we will reap the benefits of COTS,

namely, lower cost of system development, test and integration, as well as lower target recurring cost, while

meeting the radiation requirements of our target missions.

2.2 Rationale for Selection of IEEE 1394 Bus Architecture

In the process of selecting the high-speed and low-power buses, many commercial interfaces have been

examined. The candidates for the high-speed bus included the IEEE 1394, Fiber Channel, Universal Serial

Bus (USB), Fast Ethernet, Serial Fiber Optic Data Bus (SFODB), ATM, Myrinet, FDDI, AS1773, and

SPI. Many of these buses (e.g., USB, AS1773, and SPI) fail to meet a projected requirement of 40 Mbps.

Others have high power consumption which is unacceptable by deep space applications (e.g., Fiber Channel,

SFODB, ATM, and Myrinet). Some of them are not suitable for real-time applications because of the

indeterminacy of bus latency. Another important consideration is that the bus should have either radiation-

hardened components or an ASIC core design that is portable to a rad-hard foundry. A rigid evaluation

based on these factors results in the selection of the IEEE 1394 bus.

Similar criteria were given to the low-power bus selection with special emphasis on low-power con-

sumption and much less consideration for performance. The candidates included the I2C, Controller Area

Network (CAN), J1859, Low Power Serial Bus (LPSB, a 1553 Bus modified for low power), MicroLAN,

and Access Bus. Our trade study shows that the I2C is the best compromise.

The 1394 and I2C are not the ideal buses from the traditional fault tolerance point of view. Although the

1394 bus has some fault detection features, its fault isolation capability is mediocre and it does not directly

provide us with fault recovery mechanisms such as built-in redundancy and cross-strapping. Moreover,

IEEE 1394 mandates a tree topology that is in general vulnerable to network partitioning. Nonetheless, our

tradeoff study justifies the selection of these two buses because of their low cost and substantial commercial

support. The selection of 1394 and I2C enables the X2000 Program to procure COTS ASIC core designs,

which can be integrated into a single chip. It is estimated that this approach will reduce the design effort

by 30% when compared with the Cassini ASIC design, while the complexity of the ASIC is increased by

400%. Moreover, COTS products required by IEEE 1394 and I2C implementation, such as bus monitors,

prototype boards, and device drivers are readily available, which in turn, leads to further big savings.

2.3 IEEE 1394: Pertinent Features and Restrictions for Fault Tolerance

The IEEE 1394 bus is intended to be used for commercial applications such as multimedia and portable

phones. The current version of the IEEE 1394 bus can support data rates of 100 Mbps, 200 Mbps, and 400

Mbps for the cable implementation, and 50 Mbps and 100 Mbps lbr the backplane implementation. Higher

data rates will be attainable in the forthcoming IEEE 1394b. We have selected the cable implementation due

to its extensive commercial support. Accordingly, unless it is explicitly stated, all discussions in this paper

refer to the cable implementation.

Since the IEEE 1394 bus is designed for real-time multimedia applications, special attention has been

paid to guarantee that data can be delivered in time. Hence, the IEEE 1394 bus implements a technique

called isochronous transaction. All the nodes requiring on-time delivery are called isochronous nodes.

Once every 125/_s (an isochronous cycle), each isochronous node has to arbitrate but is guaranteed a time

slot (allocated bus bandwidth) to send out its isochronous messages. At the beginning of each isochronous

cycle, the root sends out a cycle start message and then the isochronous transaction will fi)ilow. Within each

4

isochronous cycle, 80% of the time is available to the isochronous transactions. The protocol of the IEEE

1394 bus is shown in Figure 2.

Subaclion (long) Isochronous (short) Subactlon (long)

• / • :,

_II--. staa ae0_y Ack _short) -" Cycle

Norminal cycle
Cycle Cycle

Figure 2: IEEE 1394 Protocol

While the isochronous cycles guarantee bandwidth and tightly bounded bus latency, it does not assure

reliable delivery since no acknowledgment is required. On the other hand, asynchronous transactions require

acknowledgment and therefore can guarantee reliable delivery. However, the bandwidth of asynchronous

transaction is not guaranteed because it is allotted only 20% of the isochronous cycle, while many nodes

may be arbitrating for that time slot. To avoid starving nodes, the asynchronous transaction employs a fair

arbitration scheme, so that every node can send message only once in each fair arbitration cycle• A fair

arbitration cycle can span over many isochronous cycles, depending on how much of each cycle is used up

by isochronous transactions and how many nodes are arbitrating for asynchronous transactions. The end of

a fair arbitration cycle is signified by an arbitration reset gap. As described in Section 4, in implementing

a fault-tolerant bus architecture, we exploit the characteristics of the protocol such as gap timing for fault

detection and isolation.

As mentioned earlier, the cable implementation of IEEE 1394 mandates a tree topology. Although there

are various types of tree structure, for space applications, it is preferred to have a "regular" topology (in the

sense that the topological structure can be easily maintained as nodes are added or deleted from the system)

because it can simplify the test and integration processes for substantial cost saving• Therefore, the stack-

tree topology depicted in Figure 3 is proposed, where a node is either a flight computer or a device• There

are three physical layer ports in each node. For each stem node, two or more of these ports are connected to

the other nodes, while a leaf node has only one port connected. Furthermore, each connection in Figure 3 is

actually two twisted wire pairs, referred to as TPA/TPA* and TPB/TPB* ("*" symbolizes the complement

signal). The TPA and TPB signals are designed for arbitration, data transmission, node insertion/removal

detection, and indication of node data rate. We take advantage of this standard feature in designing the

detection mechanisms for certain bus failure modes, such as babbling nodes (described in Section 4).

During bus startup or reset, the bus will go through an initialization process through which each node

will get a physical node ID. In addition, the root (cycle master), bus manager, and isochronous resource

manager will be elected• The root mainly is responsible for sending the cycle start message and acts as the

central arbitrator for bus requests. The bus manager is responsible to acquire and maintain the bus topology.

The isochronous resource manager is responsible for allocating bus bandwidth to isochronous nodes. The

root, bus manager, and isochronous resource manger are not fixed, so that any qualified nodes can be elected

to taketheseroleswhenneeded.Clearly,thisdynamicinitializationfeaturecanbeutilizedto supportbus
networkreconfiguration.

Oncethebusinitializationiscomplete,thebuswill enterthenormaloperation.In eithertheisochronous
or asynchronous mode, any node wishes to send data must arbitrate for the bus. The arbitration is carded

out by the two twisted wire pairs TPA and TPB. A useful feature worth to mention is that the signaling state

(TPA, TPB) used in bus arbitration contains comprehensive information about the status of the nodes and

the bus network, which can be used for fault monitoring.

Note that the stack-tree topology shown in Figure 3 has a potentially serious drawback. That is, a tree

topology by itself is not fault tolerant as any single link failure will partition the tree into two segments and

any single node failure can break the tree into three parts. What makes the design more difficult is that spare

nodes dedicated for fault tolerance are not permitted in the X2000 architecture due to power constraint.

Although various schemes of fault-tolerant bus network have been proposed in research literatures (see

[9, 10], for example), the restrictions from 1394 and from our application prevent us from utilizing those

schemes since the majority of them involve either loops or spare nodes.

There are some fault detection provisions such as CRC in the 1394 standard, but they are inadequate to

ensure the reliability required for long-life missions such as Pluto/Kuiper Express (a 12 to 15 year mission).

On the other hand, IEEE 1394a [11] provides an employable feature called "port-disable," which allows us

to implement a 1394 compliant reconfigurable bus architecture, though this feature is not purposely designed

for fault tolerance. The spirit of our solution is to maximize the use of pertinent standard features of the

COTS product in question to circumvent its shortcomings, though most of these standard features are not

designed for reliability purpose. In the following sections, we describe the design of a COTS-based fault-

tolerant bus architecture in detail with respect to bus network topology and fault detection methodologies.

1 Root B Slem2 B_ Stem3 B_ Stem4]

I I I. I I ,39,B

Leaf 5 Leaf 6 Leaf 7 Leaf 8

Figure 3: Bus Network based on Stack-Tree Topology

3 Stack-Tree Topology based Bus Architecture

3.1 Concepts

In the interest of bridging the terminology between network topology and the X2000 MCM-stack packaging

technology [12], we call the proposed topology "stack-tree topology."

Definition 1 A stack tree is a tree where each stem node is connected to at most three other nodes among

which at most two are stem nodes.

For example, the trees in Figures 4(a), (c) and (d) are stack trees while that in Figure 4(b) is not.

(a)

1 2 3 n.1 n

FT7...-7I
n+1 n+2 n+3 2n-1 2n

1 2 3 n-1 n

Figure 4: Trees

n+l n+2 n+3 2n-1 2n

(c) (d)

Definition 2 A complete stack tree is a stack tree where each stem node is connected to at least one leaf
node.

Figure 4(c) depicts a complete stack tree (CST) with n stem nodes. We call this topology simplex

complete stack tree which is denoted as CSTs. Note that the nodes are labeled such that the stem nodes have

ID numbers from 1 to n, while the leaf nodes have ID numbers from n -t- 1 to 2n. This labeling scheme will

be used in the remainder of the paper. Further, we use n, the number of stem nodes in a CST, to denote the

size of the tree. Note also that the trees in Figures 4(c) and (d) are both CSTs. Based on the CST in Figure
4(c), we can define CST mirror-image as follows.

Definition 3 The mirror-image of a complete stack tree is a tree obtained by (1) removing the edges con-

necting the stem nodes with ID numbers i and j which satisfy the relation [i - Jl = 1; (2) adding edges to

connect the leaf nodes with ID numbers k and l which satisfy the relation Ik - l[= 1.

Clearly, the CST shown in Figure 4(d) is a mirror image of that in Figure 4(c). It is worth to note that a

CST and its mirror image do not have any stem nodes in common. Moreover, based on the above definitions,

it can be shown that the mirror-image of a CST is also a CST.

3.2 Applications

The performance of the X2000 spaceborne systems is scalable and gracefully degradable. Accordingly, our

objective is to develop a fault-tolerant bus network architecture that will allow all the surviving nodes in

the bus network to remain connected in the presence of node failures, without requiring spare nodes. The

tact that a CST and its mirror image do not have stem nodes in common implies that losing a stem node

in one tree will not partition its mirror image. Accordingly, a dual bus scheme comprising a CST and its

mirror image, referred to a,s CSTdual scheme (denoted as CSTD), as shown in Figure 5(a), will be effective

in tolerating single or multiple node failures given that 1) the failed nodes are of the same type (all stem

or all leaf) with respect to one of the CSTs (see Figure 5(b)), or 2) the failed nodes involve both stem and

leaf nodes but they form a cluster at either end (or both) of a CST, which will not affect the connectivity

of the remainder of the tree (see Figure 5(c)). We use terminal clustered stem-leaf failures to refer to the

second failure pattern. Thus, for the cases which involve only the above failure patterns, all the surviving

nodes will remain connected (no network partitioning). On the other hand, if a stem node and a le',ff node in

a CSTD based network fail in a tbrm other than terminal clustered stem-leaf failure (see Figure 5(d)), both

the primary and mirror image will be partitioned.

7

asynchronoustransaction,it canbedetectedbytheacknowledgment gap timeout. On the other hand, for

the isochronous transactions which do not require acknowledgment packets, no-response failure will not

be detected by gap timing violation. Therelore, if a no-response failure occurs in an isochronous node

or its upstream nodes, the failure may go undetected. In that case, the heartbeat and polling mechanisms

described in Section 4.2.2 will effectively detect the failure. It is worth to note that since a n0-response

failure can partition a tree topology based network by blocking the communication between the upstream

and downstream nodes (relative to the no-response node), the I2C bus will be deployed to bypass the failed

node to carry out reconfiguration process.

4.3.3 Babbling Failure Mode

Babbling failure mode refers the scenario in which a node keep sending data uncontrollably. A babbling

node can block all communications in the network and thus results in a serious bus failure. The babbling

failure mode can be detected by the sequence of states on the twisted wire pairs (TPA, TPB) (Section 2.3).

When a babbling node is present, the normal sequence of arbitration, data prefix, data transfer, and data end

will be corrupted. Another detectable form of babbling is a node holding the (TPA, TPB) at the state (1,

1), which causes continuous bus resets. And as mentioned in Section 4.2.2, if the babbling node is the root

node, it can be detected through its corrupted or lost cycle start message (the later corresponds to missing

heartbeat).

4.3.4 Aliasing Failure Mode

As described in Section 2.3, the physical ID of each node is assigned dynamically during the bus initial-

ization process. When a node ID is corrupted due to a permanent fault or a single event upset such that it

coincides with the ID of another node in the network, an aliasing failure occurs.

If the root node has the aliasing problem, it will be detected by the non-root nodes when they attempt to

communicate with the root (e.g., lor bus arbitration). In particular, upon the detection of the event in which

a node sends its message to multiple roots, a bus reset will be triggered by the 1394 protocol. On the other

hand, if the aliasing failure occurs in a node other than the root, it can be detected by the polling mechanism

described earlier. That is, the root will receive response packets (HSPs) from the two nodes which have the

same ID, in responding to the same polling message. Upon the detection, the root can continue its polling

process and then identify the faulty node by checking the node IDs marked in the topology map (which is

generated during bus initialization).

5 Bus Network Reliability Evaluation

In accordance with the objective of the fault-tolerant bus architecture described in Section 3.2, we define

bus network reliability is the probability that, through a mission duration t, the network remains in a state

such that all the surviving nodes are connected (no network partitioning). Indeed the causes of a node failure

encompass physical layer failure, link layer failure and CPU failure. Moreover, while redundant links (serial

13

,--4

,--4

0J
re

k¢
O

IJ

O
Z

O_

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

i0

CST D _

CST R

I I I I I I I I

20 30 40 50 60 70 80 90 I00

Mission Duration t (×10 3 hour)

Figure 17: Bus Network Reliability as a Function of Mission Duration (A = 10 -7)

6 Conclusion

To implement fault tolerance in a COTS-based system is becoming a major challenge today when cost

concern has led to increased use of COTS products for critical applications. On the other hand, vendors

remain reluctant to incorporate fault tolerance features into COTS products because doing so is likely to

increase development and production costs and thus weaken the market competitiveness of their products.

Therefore, to cope with the current state of COTS is crucial for us. Accordingly, the significance of our

work reported in this paper is two,folds:

1) Our experience demonstrates that thorough evaluation and innovative utilization of pertinent standard

features of a state-of-the-practice COTS product could enable us to circumvent their shortcomings and

facilitate effective implementation of a COTS-based fault-tolerant system for critical applications, and

2) Our design and the resulting system which is anticipated to to be delivered to deep-space missions

in the near future may stimulate many other developments of COTS-based highly reliable systems,

which in turn, could encourage the vendors to incorporate fault tolerance features as implementation

options of COTS products. These features will permit a COTS product, in a cost-effective manner, to

satisfy the customers in both critical and non-criticai application areas.

How to provide fault tolerance for the I2C bus for protecting of the IEEE 1394 bus is beyond the scope

of this paper. A number of such techniques have been developed at JPL CISM, which will be published in

the near future. Currently, we are designing simulation methods to assess and validate the fault detection

algorithms reported in this paper. Moreover, we are motivated to develop a paradigm that will provide

guidelines for adopting COTS to space applications.

19

7 Acknowledgment

The authors wish to express their appreciation for Mr. William Charlan and Mr. Huy Luong at the Jet

Propulsion Laboratory lbr their stimulating discussions and refreshing ideas. This work is perlbrmed by Jet

Propulsion Laboratory, California Institute of Technology, and funded by NASAs X2000 Program.

References

[1] L. Alkalai, "NASA Center for Integrated Space Microsystems," in Proceedings of Advanced Deep

Space System Development Program Workshop on Advanced Spacecraft Technologies, (Pasadena,

CA), June 1997.

[2] L. Alkalai, "A roadmap for space microelectronics technology into the New Millennium," in Proceed-

ings of the 35th Space Congress, (Cocoa Beach, FL), Apr. 1998.

[3] L. Alkalai and A. T. Tal, "Long-life deep-space applications," IEEE Computer, vol. 31, pp. 37-38,

Apr. 1998.

[4] L. Alkalai and S. N. Chau, "Description of X2000 avionics program," in Proceedings of the 3nd DARPA

Fault-Tolerant Computing Workshop, (Pasadena, CA), June 1998.

[5] T. Shanley and D. Anderson, PCISystem Architecture. Addison Wesley, 1995.

[6] IEEE 1394, Standard for a High Performance Serial Bus. Institute of Electrical and Electronic Engi-

neers, Jan. 1995.

[7] D. Anderson, FireWire System Architecture, IEEE 1394. PC System Architecture Series, MA: Addison

Wesley, 1998.

[8] D. Paret and C. Fenger, The I2C Bus: From Theory to Practice. John Wiley, 1997.

[9] C. S. Raghavendra, A. Avi2ienis, and M. D. Ercegovac, "Fault tolerance in binary tree architecture,"

IEEE Trans. Computers, voi. C-33, pp. 568-572, June 1984.

[10] Y.-R. Leu and S.-Y. Kuo, "A fault-tolerant tree communication scheme for hypercube systems," IEEE

Trans. Computers, vol. C-45, pp. 641-650, June 1996.

[1 I] IEEE P1394A, Standard for a High Performance Serial Bus (St,pplement), Draft 2.0. Institute of

Electrical and Electronic Engineers, Mar. 1998.

[121 K. Sasidhar, L. Alkalai, and A. Chatterjee, "Testing NASA's 3D-stack MCM space flight computer,"

lEEEDesign & Test of Computers, vol. 15, pp. 44--55, July-September 1998.

[131 S. N. Chau et al., "X2000 architecture tiger team meeting review," Technical Report, Jet Propulsion

Laboratory, California Institute of Technoloty, Pasadena, CA, June 1998.

20

